1. Find the number of roots of \(|x|^2 + 7|x| + 12 = 0 \).

2. Find the value of \(\sqrt{132} - \sqrt{132} - \sqrt{132} - \ldots \) (Continued).

3. Find the value of \(x \), when \(4(4^{2x+1}) - 2(4^{x+1}) + 1 = 0 \).

4. If \(x + 2y + 3z = 21 \) and \(3x + 2y + z = 43 \) then find the value of \(x + y + z \).

5. Find the unit digit of \((72)^{431}\).

6. Find the remainder of \(3^{43} \) when divided by 4.

7. Students of a class are made to stand in rows. If 4 students are extra in each row, then there would be 2 rows less. If four students are less in each row, then there would be 4 more rows. What is the number of students in the class?

8. If \(A:B = 3:2 \), \(B:C = 4:3 \) and \(C:D = 3:5 \), then divide Rs. 360 among \(A, B, C \) and \(D \). Arrange them in sequential order.

9. In a circle of radius 41 m, \(AB \) and \(CD \) are two equal parallel chords of lengths 80 m each. What is the distance between the chords?

10. (a) The value find of \(x \) if \(5^{x-3} \cdot 3^{2x-8} = 225 \).

 (b) If \(4 = \sqrt{x} + \sqrt{x} + \sqrt{x} + \ldots \), then find the value of \(x \).